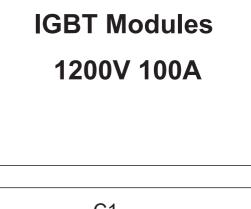


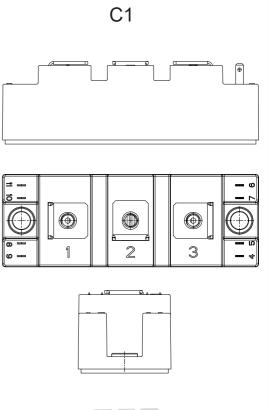
Features

- High Speed IGBT in NPT Technology
- Low Switching Losses
- High Short Circuit Capability(10us)
- Including Ultra Fast & Soft Recovery Anti-parallel FWD
- Low Inductance
- Epoxy Meets UL 94 V-0 Flammability Rating
- Lead Free Finish/RoHS Compliant ("P" Suffix Designates RoHS Compliant. See Ordering Information)

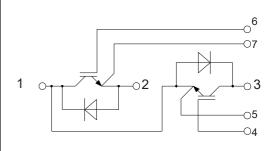
Applications

- High Frequency Drivers
- Solar Inverters
- UPS(Uninterruptible Power Supplies)
- Electric Welding Machine


Maximum Ratings

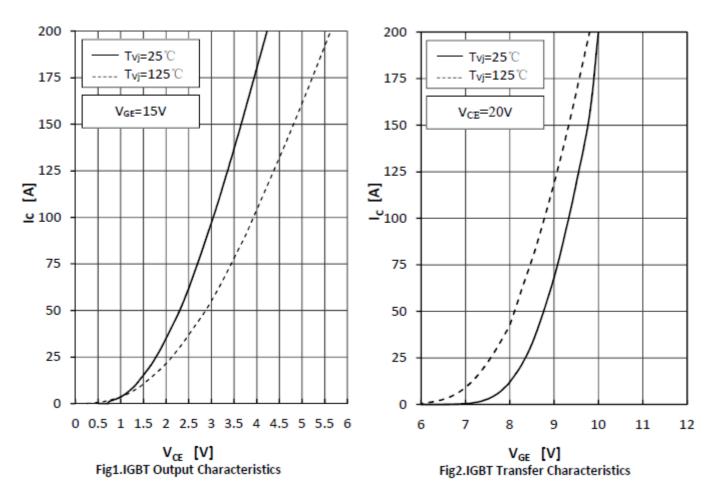

- Maximum Junction Temperature : 150°C
- Operating Junction Temperature Range : -40°C to +150°C
- Storage Temperature Range: -40°C to +125°C
- IGBT Thermal Resistance: 0.185 °C/W Junction to Case
- Diode Thermal Resistance: 0.3 °C/W Junction to Case
- Conductive Grease Applied Thermal Resistance: 0.05°C/W Junction to Case-To-Sink

Parameter		Symbol	Rating	Unit
Collector-Emitter Voltage		V_{CES}	1200	V
DC Collector Current	T _C =25°C	I _C	150	- A
	T _C =80°C	'C	100	
Peak Collector Current Repetitive ⁽¹⁾ @Tj=125°C		I _{CM}	200	А
Diode Continuous Forward Current @Tj=125°C		I _F	100	А
Isolation Voltage (All Terminals Shorted)@f=50Hz, 1min		V _{iso}	3000	V
Gate-Emitter Voltage		V_{GE}	±20	V
Power Terminals Screw:M5		Mounting 2.5~5		N*m
Mounting Screw:M6		Torque	3~5	N*m
Maximum Power Dissipation (IGBT)	T _C =25°C T _{jmax} =150°C	P _D	675	w
Weight of Module		G	155	g

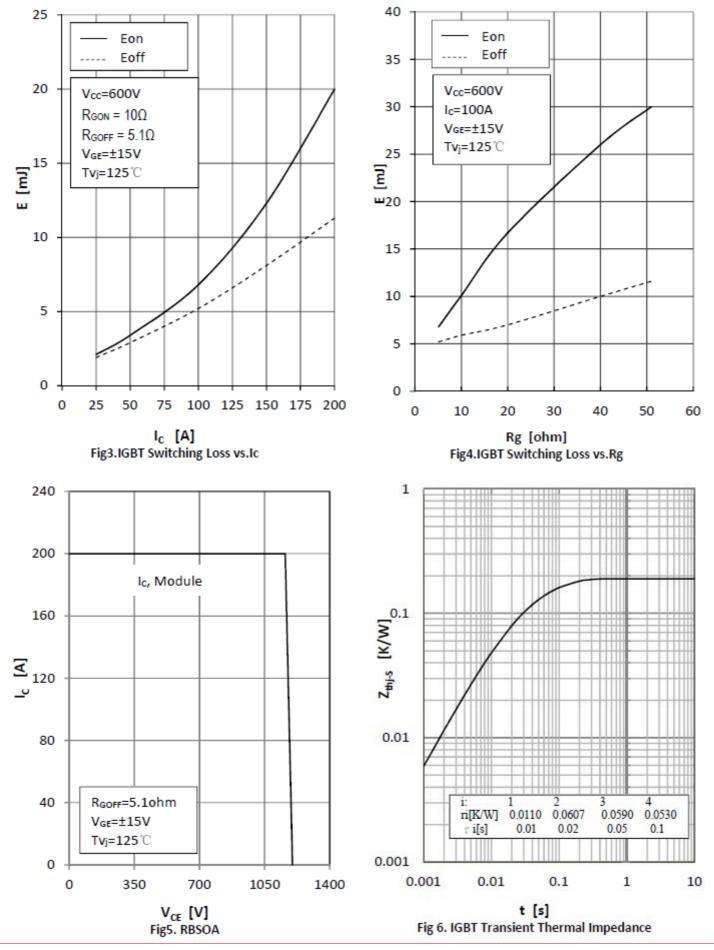

1. Repetitive Rating: Pulse width limited by max. junction temperature

Circuit Diagram

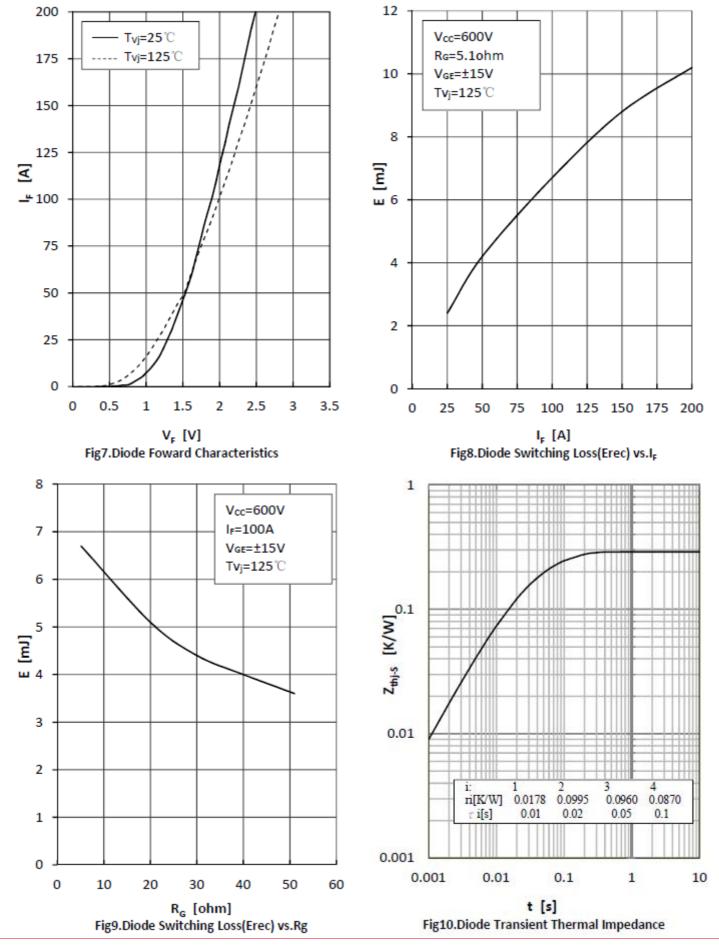
Electrical Characteristics of IGBT @ 25°C (Unless Otherwise Specified)


Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
OFF Characteristics						L
Collector-Emitter Breakdown Voltage	V _{(BR)CES}	V _{GE} =0V, I _C =0.25mA	1200			V
Collector Leakage Current	I _{CES}	V _{CE} =V _{CES} , V _{GE} =0V	=V _{CES} , V _{GE} =0V		0.2	
		V _{CE} =V _{CES} , V _{GE} =0V, T _J =125°C			1	mA
Gate Leakage Current	I _{GES}	V_{CE} =0V, V_{GE} = \pm 20V	-400		400	nA
Gate-Emitter Threshold Voltage	V _{GE(th)}	V _{CE} =V _{GE} ,I _C =4mA	5	5.8	6.6	V
Collector-Emitter	M	V _{GE} =15V, I _C =100A		3.0		V
Saturation Voltage	V _{CE(sat)}	V _{GE} =15V, I _C =100A, T _J =125°C		3.8		
Dynamic Characteristics					1	
Input Capacitance	C _{ies}			6.7		
Output Capacitance	C _{oes}	V _{CE} =25V,V _{GE} =0V,f=1MHz		1.1		nF
Reverse Transfer Capacitance	C _{res}			0.55		
Switching Characteristics	1		I.	I	1	L
Turn-On Delay Time	t _{d(on)}			102		
Rise Time	t _r	V _{cc} =600V, I _c =100A,		79		- ns
Turn-Off Delay Time	t _{d(off)}			284		
Fall Time	T _f	V_{GE} = \pm 15V, R _G =10Ω, Inductive load,Tj=25°C		24		
Turn-On Switching Loss	Eon			11.2		
Turn-Off Switching Loss	E _{off}			2.6		mJ
Turn-On Delay Time	t _{d(on)}			110		
Rise Time	t _r			85		
Turn-Off Delay Time	t _{d(off)}	V_{CC} =600V, I _C =100A, V_{GE} = \pm 15V, R _G =10Ω, Inductive load,Tj=125°C		325		ns
Fall Time	T _f			28		
Turn-On Switching Loss	Eon			15.6		
Turn-Off Switching Loss	E _{off}			3.8		mJ
Internal Gate Resistance	R_{g-int}			2.5		Ω
SC data	I _{SC}	T _P ≪10us, V _{GE} =15V, V _{CC} =600,V _{CEM} ≪1200V		700		А

Parameter	Symbol	Test Conditio	ons	Min	Тур	Мах	Unit
Forward Voltage	V _{FM}	I _F =100A, V _{GE} =0V, T _J =25°C			1.9		V
		I _F =100A, V _{GE} =0V, T _J =125°C			2.0		
Reverse Recovery Charge	Q _{rr}		T _J =25°C		5.6		uC
, , , , , , , , , , , , , , , , , , ,			T _J =125°C		12.1		
Peak Reverse Recovery Current	I _{rr}	I _F =100A,di/dt=1200A/us, V _{rr} =600V, V _{GE} = -15V	T _J =25°C		78		A
			T _J =125°C		95		
Reverse Recovery Energy	E _{rec}		T _J =25°C		3.2		- mJ
			T _J =125°C		6.7		

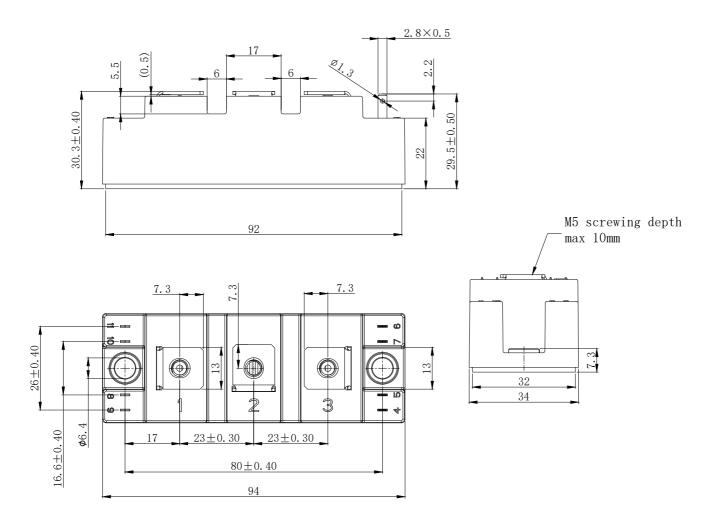

Electrical Characteristics of FWD @ 25°C (Unless Otherwise Specified)

Curve Characteristics



Curve Characteristics

Curve Characteristics



Package Dimensions

C1

Dimensions in mm

Ordering Information

Device	Packing
Part Number-BP	Bulk: 24pcs/Box ; 120pcs/Ctn

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. *Micro Commercial Components Corp*. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold *Micro Commercial Components Corp*. and all the companies whose products are represented on our website, harmless against all damages. *Micro Commercial Components Corp*. products are sold subject to the general terms and conditions of commercial sale, as published at

https://www.mccsemi.com/Home/TermsAndConditions.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. **MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources**. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.